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This paper presents novel plane wave time domain (PWTD) algorithms which
accelerate the computational analysis of transient surface scattering phenomena. The
proposed PWTD algorithms permit the fast evaluation of transient fields satisfying
the wave equation. The cost associated with the computation of fie\joakervers
produced by a surface bound source density represented in teNpspdtial samples
for N, time steps scales &(N; N2) if classical time domain integral-equation-based
methods are used. It is shown that this cost can be redug@dMpN_Z/3 log Ns) and
O(N;Ns log Ns) using two-level and multilevel PWTD schemes, respectively. These
algorithms are the time domain counterparts of frequency domain fast multipole
methods and make feasible the practical broadband analysis of scattering from large
and complex bodies. © 1998 Academic Press

Key Words:integral equations; time domain; plane wave time domain (PWTD);
slant stack transform (SST); computational complexity.

1. INTRODUCTION

Recently, the scientific community has expressed a renewed interest in the analy
short-pulse radiation and transient scattering phenomena [1-8]. The characterizati
transient wave phenomena is of paramount importance in disciplines ranging from ele
magnetics to acoustics, elastodynamics, and geophysics. Efficient computational an
of these phenomena hinges upon the availability of fast time domain algorithms.

Today, all prevailing time domain techniques for analyzing wave scattering phenon
are differential-equation based. Examples include the finite difference time domain (FC
technique [9] and the time domain finite element method [10]. These techniques rely
volumetric discretization of the structure under consideration and require local boun
conditions for grid truncation. As such, they are not well suited for analyzing free-sg
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158 ERGIN, SHANKER, AND MICHIELSSEN

surface scattering problems because the number of unknowns scales proportionally t
volume of the computational domain containing the scatterer and inexact local absort
boundary conditions have to be used to emulate the radiation condition. Furthermore
large bodies, additional steps have to be taken to overcome grid dispersion errors, addi
the computational cost of these algorithms. For free-space surface radiation and scatts
problems, time domain integral-equation (TDIE)-based methods appear to be preferab
differential-equation-based techniques because (i) they only require a discretization of
scatterer surface, (ii) they implicitly impose the radiation condition, and (iii) they are d
void of grid dispersion errors. Unfortunately, TDIE techniques have long been conceivec
intrinsically unstable and computationally expensive when compared to their different
equation counterparts. However, recently, progress toward stable TDIE-based scheme
been reported [11-15]. In contrast, literature on techniques for reducing the computatic
complexity of these TDIE techniques is virtually nonexistent. This is in spite of the fa
that the last decade has witnessed significant speedup of frequency domain integral ¢
tion solvers with the advent of the fast multipole method (FMM) [16-19], the impedan
matrix localization technique [20], the multilevel matrix decomposition algorithm [21
etc. Although the structure of transient wave fields has been well studied [2, 6, 22—
to our knowledge no TDIE algorithms with reduced computational complexity have be
reported. Recently, preliminary research has indicated that fast methods, similar in spir
the frequency domain algorithms, can also be developed in the time domain [25]. The |
pose of this paper is to introduce novel fast time domain algorithms that are based on p
wave expansions. These algorithms result in a significant reduction of the computatic
cost associated with the analysis of surface scattering problems when used in tandem
TDIE-based techniques such as the well-known marching-on-in-time (MOT) method [3,

Differential and classical integral-equation-based schemes for analyzing transient w
phenomena suffer from a high computational cost. Consider a surface scatterer 8f ar
which resides in a homogeneous three-dimensional space (Fig. 1) and which is excited
pulse whose temporal spectrum vanishessfor wmayx. Integral-equation-based approaches
model the fields scattered from the surface as those produced by induced surface sot
Since the sum of the incident and scattered fields satisfies certain boundary condition

Incident Pulse

FIG. 1. Scattering problem under consideration.
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the surface of the scatterer, an integral equation relating the incident field on the sca
to the field produced by all current and past sources can be constructed. Assuming th
induced surface sources reside on the scatterer surface for a duratdter which they
become vanishingly small, the source distribution can be discretized and represent
terms ofNs o« S(wmax/C)? spatial andN; o T wmay temporal samples. Here,denotes the
wave speed in the medium. Discretization of the integral equation results in a time marc
procedure for computing the induced sources. Updating the source distribution require
computation of the field aNs observers due to alNs sources. Since this computation
has to be performed for all time steps, the computational complexity associated with
classical MOT procedure scales @gN; st). Alternatively, if this problem is analyzed
using FDTD,0(N22%) volumetric field quantities must be updated for@lIN; N22°) time
steps, resulting in a computational complexity@fN;N2°). These estimates reflect the
fact that FDTD mesh sizes become smaller as the problem size grows in order to minil
the build up of phase dispersion errors throughout the mesh [26].

This paper introduces diagonalized time domain translation operators which permi
rapid evaluation of transient fields produced by surface-bound source distributions. T
diagonalized translation operators can be used in tandem with classical integral-equ
based techniques for analyzing transient scattering phenomena. It will be shown tha
computational complexities associated with the solution of large scale surface scatts
problems using the proposed two-level and multilevel fast plane wave time domain (PW
algorithms scale a® (N; N;‘/3 log Ns) and O(N;Ns log Ng), respectively. Computer codes
based on these PWTD algorithms are expected to outperform classical MOT and FI
codes for sufficiently large surface scatterers.

This paper is organized as follows. Section 2 introduces a diagonalized translatior
erator for time domain fields that satisfy the scalar wave equation, for both continu
and sampled field representations. Section 3 discusses the practical implementation
PWTD algorithm, validates the algorithm through numerical examples, and analyzes
computational complexity of this algorithm when used in conjunction with MOT schem
Finally, Section 4 presents our conclusions.

2. ADIAGONALIZED TIME DOMAIN TRANSLATION OPERATOR

This section introduces plane wave representations for transient fields and deri
diagonalized time domain translation operator together with space-time constraints
ensure its validity and applicability in a time marching algorithm. A closed-form express
for the translation function for sampled field representations is also derived.

2.1. Preliminaries

Consider a source distributia(r, t) residing in a source sphere of radiRs centered
aroundr®® and radiating in an unbounded, nondispersive, and homogeneous mec
(Fig. 2a). The fieldu(r, t) produced byq(r, t) is to be evaluated at observers distribute
throughout an observation sphere of radR¢scentered arountf©@. Let R, =r%© — rc®
denote the vector connecting the source and observation sphere centers. Without Ic
generality, it is assumed th&, = Rs and thatR; = R.Z, whereR. = |R|.

The fieldu(r, t) satisfies the wave equation

2

19
vau(r,t) — @Wu(r,t) = —q(r,1). (1)
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FIG. 2. (a) The geometry of the problem. (b) Definition of angles in primed coordinate system. (c) Relev:
dimensions for ray translation.

The field at an observer locatedrdtcan be succinctly expressed as

0 Qe t=r° —r'l/c)
= 2
u(r®, /Sdr arro—r )

where Vs denotes the volume of the source spheregy(if, t) consists of a point source
located ar® with a time signaturd (t), i.e., if

q(r,t)=f (8 —r?), 3)

wheres(-) is a Dirac impulse, then the field observed @ats

u(ro’t)zw’ (4)

Anr2

wherer = |r2] andr2 =r° — r3. Henceforth, to simplify the notation, the positions of the
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FIG. 2—Continued

source and observation points relative to their respective sphere centers are denot
FS=rs —r® andf®=r° — r®@,

If multiple sources are present, the observer field is evaluated by aggregating pe
fields (4) due to all sources. This process is repeated for multiple observers if neces
The computational cost of this operation is proportional to the number of sources
observers, as well as the required number of temporal field samples and hence s
unfavorably. It is well known that the cost of the frequency domain counterpart of t
operation can be considerably reduced by using the FMM. Instead of directly evalua
the field at each observer due to all sources, the FMM relies on a three-stage pre
of aggregation, translation, and disaggregation to efficiently compute observer fields.
associated reduction in computational complexity is due to the fact that the freque
domain translation operator is diagonal when expressed in a plane wave basis [17, 27

2.2. A Plane Wave Representation

As a first step toward representing the fiel@®, t) as a superposition of plane waves
the source signaf (t) of durationT is artificially broken up intoL subsignalsf(t),
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| =0,...,L — 1ofdurationTs=T/L such that

L-1
fo=) fi. (5)
1=0

where fi(t) =0 fort <ITs andt > (I + 1)Ts. Let g (r, t) denote the source distribution
associated with the subsignal active during time intelrviag.,

q(r,t)=fi®sr —rd), (6)

and letu; (r°, t) denote the field at® due toq (r, t). Then,

L-1
qr, =Y g, (7
1=0
and
L-1
ur® =" e . (8)
1=0

To arrive at a plane wave representationu@f©, t), consider the field (r°, t) defined by

N 1 9 (7 Ot R
u|(r°,t):—§2ca/o dqb/o do singg (k. t —k -2 /c). (9)

whererg =r° —r°®, k =% sind cosp + ¥ sind sing + 2coso, andg (k, t) is the slant
stack transform (SST) of the source distributeptr, t) [8, 28] defined by

Gk v=[ drig(r t+k- (r'=r%)/c). (10)
Vs
Note that, in Eq. (9), the integration is over a cap of the unit sphere for whicl®;;. For
the source configuration specified in Eg. (6), the SST is given by

gk, t)= fit +k-s/c). (11)

To gain insight into the relationship betwe@rir®, t) andu (r°, t), (11) is substituted into
Eq. (9) to obtain

P 2 Oint

dp [ dosinefi(t—k-r2/c). (12)

o
M= gt o © s

Next, the above integral is evaluated by transforming the integration varighles to a
new set of angular coordinaté®’, ¢") which are defined with respect to the axis alignec
with the vector? as shown in Fig. 2b. In this new coordinate system, the upper limit c
o', 0;,, depends ow’, r°, andr®, and

0

21 O (97.1°.1°) o
— — de’ do’ sing’fi(t —k -r?2/c), 13
8r2cat Jo ¢ /0 I ( s / ) (13

Gy (ro,t)y=—
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wherek’ = X' sing’ cos¢’ + ¥’ sing’ sing’ + 2 coss’, andr® = 2r2. In deriving the limits
on the elevation integral in (13), it was tacitly assumed that

z-r?
Ot > cosl<r—os> ) (14)
S

Usmgk ro =rdcosd’ and setting = (rg/c) cosd’ in (13) yields

27 rd/c
G (r°,t) = / / dr it — 1)
! 81 2r° at (12/0) oSty (@,10,1%) !
1 r ro .
=gy o0 [0(1-F) - 0 (- Feostwroe)]

R PR _L/zndqj/f L (¢, r°r% ). (15)
_47-”;) | c 8]'[2|’g o | c int L .

In the last expression, the first term corresponds to the true observeufigldt). Note
that, were it not for the second term, which will be referred to as the ghost sig&l, t)
would be identical tay (r°, t). The above derivation closely follows that of Heyman [6]
who generalizes the results of Tygel and Hubral [2]. Equations (12) and (15) imply tl
if the ghost signal can somehow be removed fronr°, t), the true observer field can
be constructed as a superposition of plane waves using techniques that are akin to
underlying the frequency-domain fast multipole method. In what follows, a scheme
derived that permits one to time gdter®, t) in order to retain only the true observer field.

It can be verified that (14) holds for arbitrary source and observer locatfoasdr®
chosen within the source and observation spheres provided that

Oint > SIN(2Rs/Ry). (16)

From Eq. (15) it follows that the ghost signal presenijir®, t) vanishes after

18" = cos@;nln +(+DTs
< (Rc CoStint + 2Rs) /c+ (I + DT, (17)

where6/., = min[6;.(¢', r° r®)], and the upper bound follows from geometrical cons
derations (see Fig. 2c). The fields in the observation sphere coincide with the true fi
after the ghost signal has vanished. Also, the true field does not reach the observation s

before
2" = (R; — 2Rs)/C + I Ts. (18)
Therefore, provided thaf@™s > t3"°* all ghost fields in the observation sphere cease

exist before the true signal arrives. In addition"# > (I +1)Ts, all source activity related
to thelth time interval ends before the true signal reaches any observer. In summary,

0 t < tltrans
GI (rO’ t) t > tltrans ’

"S> (| + DT = fi(t) =0, t =" (20)

grans > 9%y (r°, 1) = { (19)
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The above two conditions can be restated, using (17) and (18), as

T
s _R_, (21)
RS RS
and
cTs R.
— < —(1— costin) — 4. 22
R = Rs( int) (22)

It can be shown that constraint (16) is automatically satisfied provided that (22) holds
anyTs > 0.

The above two constraints are key to the development of the PWTD algorithm. Equat
(19) implies that if, for a given source and observation sphere pair (i.e., for a Bivé),
acTs/Rs and ad that satisfy both (21) and (22) are selected, then the €iglf, t) can
be reconstructed as a superposition of time-gétéed, t). The contribution of each of the
time-gatedi (r°, t) to the observed field can be obtained by translating the SST of the sou
distributiong (r, t) att = t["a" Itis easily recognized that the SSTopir, t) corresponds to
“outgoing” rays, leaving the source sphere; similarly, it will be shown in the next subsecti
that after translation (i.e., after= t2"9, u) (r°, t) can be described in terms of “incoming”
rays impinging upon the observation sphere. Condition (21) ensures that this SST ca
completely constructed prior to the translation time, enabling the PWTD algorithm to
incorporated into any time marching scheme.

In practice, provided that@Ts/ R that satisfies (21) is chosen for a givBgY Rs, 6int is
computed from (22) by enforcing the equality. This procedure minintizesnd hence will
minimize the computational cost associated with the numerical procedure for evalual
G, (r°,t), as described in Section 3. For this choicecd}/Rs and 6y, it follows from
(17)—(19) that at = ™", the ray traveling along = 0 is about to enter the observation
sphere, while rays traveling along directighs= 6, have all exited the sphere (Fig. 2c).
At t = t"S rays traveling at intermediate angles partially overlap with the observati
sphere, but add up to a null field in its interior.

The implications of inequalities (21) and (22) are further illustrated in Fig. 3. For a give
R:/Rs, combinations ob;,; andcTs/Rs that satisfy both (21) and (22) lie to the lower
right of the intersection of the curves obtained by enforcing the equalities in (21) and (2
For example, while the poin®i., cTs/Rs) = (120°, 15) permits a ghost-free solution for
R./Rs = 20, this same combination does not permit a ghost-free solutidR.fdRs = 10.
Note that as the two spheres approach each other, the region that satisfies both cond
collapses to the poin®jn, cTs/ Rs) = (180, 0).

2.3. Closed-Form Translation Function for Sampled Field Representations

Equation (9), together with constraints (21) and (22), is the basis for formulating t
PWTD algorithm for sampled field representations. In practice?, t) is evaluated by
assuming that the source distributiqtr, t) is temporally bandlimited, i.e., the temporal
spectrum off (t) vanishes fow > wmax Hence,f (t) can be sampled and locally interpo-
lated using temporally bandlimited and approximately timelimited functions as

Nt

f(t) =) fkayPR), (23)

k=1
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FIG. 3. Graphical representation of the constraints (21) and (22) for different valueyg Bf.

whereAt is the time step size arig(t) is a bandlimited interpolant [29]. Many choices for
the interpolation function exist, however, a near optimal one—a variant of the approxin
prolate spheroidal (APS) functions introduced by Knab [30]—is given by

wo SiN(wo (t — KAL) sinh(Z pr(1 — 1/x0)v/1 — [(t — KAL)/ pAt]?)
P(t) = — : . (24)
ws  wo(t —KAY  sinh(Z pi(1—1/x0))v/1— [(t — KAL)/ pAt]?

where

ws = /Al = XoWmax, (25)
wo = (ws + Wmax) /2. (26)

Inthe abovey, > 1isthe oversampling ratio, ampdis aninteger that defines the approximat
duration of the interpolation function. In practice, a truncated versid @f, obtained by
settingP(t) = 0 for |t —kAt| > ptAt, is used. The relative interpolation erggintroduced
by this truncation can be shown to be bounded as [30]

1
sinh(Z pi(1—1/x0))”

let| < (27)

which decreases exponentially fast with increagingHence, Eq. (23) permits local inter-
polation in terms of §; samples.
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From Eq. (23), it follows that the source signf{t) can be broken up into subsignals
fi(t), asin Eq. (5), given by

(+HM—1

fi(t) = Z f (KAL) Pc(t). (28)

k=IM

Each subsignaf (t) is defined in terms of; samples of the signdi(t) but spandvl{ =
M; + 2p; time steps. In other words, whereas each subsigiiglis formed from samples
of f(t) in an interval of lengthls = M;At, the duration of eacH (t) is T, = M/At, and
adjacent subsignals overlap bp;2amples. Obviously, the total number of time sample:
equalsN; = L M;. Since the interpolation functioR(t) is bandlimited taws, so is each
subsignalf (t).

Proceeding with the derivation of a closed-form translation operator, note that

Gkt —k-r/c) =8t —k-F°/0) %8t —k-Re/0) x G (k. 1), (29)

wherex denotes temporal convolution. Using (29) and (11) in (9) yields

N o 1 0 2r Oint . 5o n
ar (r ’t):_&rzcﬁ A d¢ A dosings(t —k-f°/c) x8(t — k-R¢/C)

xSt +K-F5/c)* fi(t). (30)

As mentioned earlier, the SST of the source distribution represented by the last convolu
in Eq. (30) can be interpreted as outgoing rays leaving the source sphere. It is seen
for a point source, the SST imposes a direction-dependent shifit(tbnby an amount of
k- 'S /c which can be incorporated into Eq. (28). Note that the first convolution in Eq. (30)
the same as the SST exceptthatthe direction dependency is reversed. Thgrefote can
be interpreted as a superposition of incoming rays projected onto the observers. How
the use of the interpolation function defined in Eq. (24) implies that knowledge of the fie
at the edge of the observation sphere requires knowledge of samples from incoming
that residep; samples exterior to the sphere in all directions. Therefore, when working wi
sampled field representations, constraints (21) and (22) should be satisfied in taifms c
andR; = Rs + picAt, instead ofls andRs. Translation times should also be computed in
terms of the primed quantities.

To efficiently evaluatdi, (r°, t), define

gk, t) =58t —Kk -/c) x5t +k-FS/c) * fi(t)
= fit — k- F° —7%/c). (31)

The functiong (k, t) can be interpreted as the time-dependent radiation pattern of a sou
distribution residing in a sphere of radiuR2 Thereforeg (k, 1) is spatially quasi-band-
limited and can be reconstructed to arbitrary precision, provided it is sampled dens
enough over the sphere, using the expansion [31]

M’ Mp

gkt =>" " adknm k), (32)

n=0 m=—M,
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where the function@nm(k) represent bandlimited spherical interpolation functions. As wi
the temporal interpolants, many different choices forghe,(k) exist. One near optimal
choice is a combination of the Dirichlet kernel and the cylindrical APS function introduc
by Bucci [31], for which

Knm = % SinG, coSnm + ¥ SNy SiNgpm + 2 €Oy, (33)
¢nm = M2 /(2M;, + 1), (34)
On = N27/(2M’ + 1), (35)
M’ = Int(x2M), (36)
M = Int(2x1wsR,/C) + 1, (37)
My = Int(2[sin, + (x1 — 1) sin’3 6p ] ws R /C) + 1, (38)
Qo) = § 2@ "=9 (39)
$ (@)D, (¢ — nm) + S (=0)Dm, (¢ + 7 — pnm) N#0
_sin[(2My + 1)¢ /2]

)= My + D sing/2) o)

_ Ru(@—6npsAO)
S0) = Ru(0. paAd) Dw (60 — 6n) (41)
A6 = 27/2M’ + 1) (42)

. . _1 B — i

Ry (@, paA) = sinh[(2N + 1) sinh/sir(psA6/2) — sirf(6/2)] . 43)

\V/SIP(psA6/2) — sirf(6/2)

In the abovex; > 1 is the excess bandwidth factgr; > 1 is the oversampling ratio in
elevation,ps is an integer that defines the approximate angular extegt@f, andN =
M’ — M. As with the temporal interpolation function§;(0) can also be truncated for
|6 — 6n| > psA0, yielding a relative interpolation erreg bounded by

1
= sinhfrps(1— 1/x2)]

(44)

|&s|

This error also decreases exponentially fast with increapindglence, Eq. (32) permits
local interpolation in elevation in terms ofp2 samples.

Substituting expansion (32) in (30), rearranging the terms, and interchanging the c
of summations and integrations yield

M’ Mn
GO =" > 8t —km:F°/0) % Tam(t) # 8(t +knm - F5/C) % i(1), (45)
n=0 m=—M,
where
9 2n Bint R R
7, = — — iNn0Qnm(k —-k-R 4
) =~ /O do [ dosino@umost —k-Reje) @0)

is the translation function. Sinée R, = R. cos, the integral in Eq. (46) can be evaluatec
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in closed form and the translation function can be succinctly expressed as

Tam(t) = —18\Dn<cosl Ct) for Re COShint <t < & (47)
47 R.(2M,, + 1) at Re c c
where
[ (0) n=0
@)= { S\0)+ Si(—0) n£0° (49)

Another useful expression fafm(t) results upon expanding the spatially bandlimited anc
even functionsl,(9) in a cosine series as
M’+N
Wn(®) = ) ankcoske). (49)
k=0
Substituting (49) into (47), and using the relatify(x) = cogk cos! x), whereT(x) is
thekth order Chebyshev polynomial, yields

M’+N
Tom(t) = —m% ;0 an,ka(S—Ri> for % COSfint <t < % (50)
Equation (50) shows that the translation function can be expressed as a finite-order [
nomial. The sum in Eq. (50) can be efficiently evaluated using Clenshaw’s recurrel

algorithm [32].

To elucidate the properties of the translation function, the functigrig) are plotted with
respectt® forn=0,...,10, M =4, M’'=10, andps=3in Fig. 4a. The corresponding
time signals¥,(cos*(ct/R.)) are shown in Fig. 4b as a function of the time paramete
T =Ct/R;. Clearly, the duration of the translation function(fs— cos6in) Rz/C. If i is
chosen as outlined in the concluding paragraph of Subsection 2.2, i.e., by enforcing
equality in (22) for al{/c R, that satisfies constraint (21), this duration eqUgls- 4R, /c.
However, a truncated version &f,(9) may be used becausk(9) is vanishingly small
for |6 — 6,| > psAB. As can be seen in Fig. 4, the translation function associated wi
the directions for whicl®, > 6t + psAO vanishes a¥,(0) =0 for 0< 0 < 6. The ¥,
associated with these directiofts= 7, . . ., 10) are plotted with dash-dotted lines in Fig. 4.
For other directions, the nonvanishing portionigfin the interval O< 6 < 6, contributes
to the translation function and is plotted with a solid line in Fig. 4. Note, however, that f
these directions, the duration of the translation function may become much shorter t
T, + 4R, /c. Also, if T{ is fixed, constraint (22) dictates that, as the spheres move furth
apart, the number of contributing directions decreases.

The above analysis can easily be extended to source and observation spheres for v
R. is not aligned with the-axis. One approach is to use interpolation functions that ar
windowed in both elevation and azimuth instead of the above-introduced interpolants 1
are windowed solely in elevation. Alternatively, instead of relying on the bandlimited n
ture of the far-field interpolation functions to bandlimit the translation operator as in t
above derivation, the translation operator can be explicitly bandlimited, and the integrat
over the sphere performed using an exact quadrature formula. This procedure leads
translation function for which the angular and temporal dependences can be expre
in terms of Legendre polynomials [33]. This derivation is akin to the traditional cor
struction of windowed translation operators for frequency domain fast multipole methc
[19, 34, 35].
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3. PRACTICAL IMPLEMENTATION AND COMPUTATIONAL COMPLEXITY

169

(a) Interpolation function®,(9) as a function of. (b) Time signalsl, (cos(ct/R;)) as a function

This section describes the practical implementation of the PWTD algorithm and stu
its computational complexity. Subsection 3.1 outlines the use of the PWTD for evalua
fields at multiple observers due to multiple sources residing in geometrically separate
servation and source spheres. This section also describes a series of numerical tes
were conducted to validate the algorithm. Subsections 3.2 and 3.3 comment on the L
the PWTD algorithm for scattering computations in a two-level and a multilevel framewc

respectively.



170 ERGIN, SHANKER, AND MICHIELSSEN

3.1. Sphere-to-Sphere Translation

This section outlines a sequence of operations leading to a successful implementatic
the PWTD algorithm for computing observer fields. Here, we expand our viewpoint a
assume thai(r, t) consists oMM point sources located e, j = 1, ..., M, distributed
throughout the source sphere and characterized by temporal signbtgrgs.e.,

Ms
q(r,t) = Z flys(r —rs). (51)

=1

It is assumed that the spectra of &ll(t) vanish forw > wmax. The field due tay(r, t) is
to be evaluated a1, observers located af",i =1, ..., M,, distributed throughout the
observation sphere. To simplify the notation, the positions of the source and observa
points relative to their respective sphere centers are denot&d iby=rsi) — rc® and
fo) — pol) _ pc(o)

The field at theth observer is given by

Ms fI(t— [ro® —rsh)| /c)

u(ro® t) = Z 471—’r0(l) “ro| (52)

=1

The evaluation of (52) at alM, observers for alN; time steps presents a computationally
expensive task as its cost scaleaN; MsM,), which is of O(N; MSZ) if Mg o Ms. This is
due to the fact that in a direct evaluation of Eq. (52) for all observers, one has to aggre:
the effects of all sources for all time steps.

Alternatively, the fields at th&, observers can be evaluated using Eq. (45), which, fc
the source density expressed by (51), takes the form

Ms ‘
G (r°®,t) = Z Z —TKnm 70 /C) % Tym(®) % > 8(t +knm- 7P /) % fi) (1),
n=0 m=— j=1

(53)

where itis assumed that each source sigriat) is broken up intd_ subsignalsﬁj ®, =

1, ..., Ms. Equation (53) is the crux of the PWTD algorithm and indicates that the fielc
within the observation sphere can be constructed via a three-step process consistir
source aggregation, ray translation, and ray disaggregation. The aggregation step, wh
represented by the innermost summation in Eq. (53), maps the source subsignals onto
of time-dependent plane waves—henceforth tersudatays—propagating along thienm
vectors. The translation step is carried out by convolving these subrays with the transla
functions given in Eqg. (46). The disaggregation process can be viewed as the reverse c
aggregation process and maps a set of incoming rays onto observer locations.

To implement this algorithm for a giveR; and R;, a T is selected (i) which satisfies
constraint (21) and (ii) for whichR,/(cT,) is of O(1). If it is impossible to satisfy both
of these conditions, the fields in the observer sphere should be computed using clas
procedures, as the PWTD becomes less efficient. Né;, ia computed by enforcing the
equality in constraint (22). The following three operations are then performed, far all
time intervals:

(i) Computethe sampled SST ofthe source distribution for all ray directions (i.e., perfo
the right most convolution and carry out the innermost summation in Eq. (53)).



FAST EVALUATION OF 3D TRANSIENT WAVE FIELDS 171

(i) At t=t""S convolve each subray with the translation function on a direction-b
direction basis, and add the resulting subrays onto incoming rays which propagate thr
the observation sphere (i.e., perform the middle convolution in Eq. (53)).

While in certain cases it is advantageous to perform this convolution directly in the ti
domain, it is assumed here that the convolution is performed using an FFT. However,
should be exercised, as the translation function is not bandlimited and cannot be san
without aliasing. On the other hand, since each subray is bandlimited, so is the rest
the convolution. In practice, the Fourier transform of the translation function is evalue
analytically at the frequency points required by the FFT. This is efficiently accomplishec
locally expanding the translation function in terms of a small set of orthogonal polynom
whose Fourier transforms are well defined.

Note that this operation translates each subray onto an incoming ray that propa
in the same direction, analogous to diagonal frequency domain fast multipole transle
operators.

(iii) Evaluate the fields at the observers as the incoming rays travel across the observ
sphere (i.e., perform the left most convolution and summations in Eqg. (53)).

Note that each subray can be at m@R;/c + T¢)/At time steps long. Furthermore, as
discussed in Subsection 2.3, the translation function associated with each ray directi
(4R,/c+ T¢)/ At time steps long. By virtue of the choic&/ o R, both the subray duration
and the translation function length scale@@M/). From Eqg. (32), itis seen that the numbei
of ray directionsDg equalszr':":’O(ZMn + 1). Using Egs. (36)—(38), it can be shown tiat

is proportional to the surface area of each sphere,Dgx (R./(CAt))2.

Since the aggregation step majdg source subsignals ontds subrays, its computa-
tional cost scales a®(M;M;Ds). The dominant cost in the translation step is due to tt
convolution and scales &3(M/ log M/) if evaluated using an FFT. This operation is per
formed for allDs directions, yielding a computational complexity@f Ds M/ log M/). The
disaggregation step has the same complexity as the aggregation step.

For a surface scatterer, the number of sources or observers in a sphere is proportio
the surface area of the sphere, iMs,oc (R./(CAt))2. This implies that, oc /Mg and that
Ds o Ms. It may be verified that the cost of the aggregation and dissagregation proce
dominates that of the translation process and that the cost of evaluating the observed
for one subsignal using PWTD algorithm scale€a#1; M?2). Hence, the cost of evaluating
the fields due to alL subsignals scales &(N;M?). This cost is no less than that of the
classical algorithm. Nonetheless, the PWTD scheme permits the reuse of SST informe
which results in a reduction of the computational complexity when applied in an integ
equation setting.

However, as noted previously, not all outgoing rays contribute to the observed fielc
use is made of the windowed character of the translation operator. In fact, the numb
subrays that needs to be translated shrinks to a constant as the ratio of the distance be
the spheres and the sphere radii increases. In these circumstagcas,be omitted in the
above complexity estimates; hence, the computational complexity of computing the fi
associated with one time interval scale<s$/; Ms), and that of alL subsignals combined
scales a®© (N; My).

A series of numerical experiments was conducted to validate and examine acct
versus efficiency trade-offs in the PWTD algorithm. To this end, the fields due to a se
point sources are calculated using the PWTD scheme and compared to the exact fiel
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what follows, all source functions are generated using the Gaussian pulse
g(t) — ef(t774750)2/202. (54)

The variance is fixed at 2.12 ns, which yields a pulse with a duration (full width betwee
half maximum) of 5 ns. For all practical purposes, this pulse can be assumed to be band
ted towmax = 6007 x 1P rad/s. The source and observation spheres are of ragissl m
and are separated IR = 20 m. The time step siz&t is fixed at 0.5 ns and the wave speed is
chosen to be = 3 x 10 m/s. For a sampled field representation, this choice of paramete
yieldst™@"S=120At + T — 2p At.

As a first test, the fields due to two sources located at s1 and s2, as shown in the |
of Fig. 5a, are evaluated at two observer locations, ol and 02. The time signature
the sources ard ! (t) = g(t) + 0.5g(t —3x 10°8), j =1, 2. In accordance with (21)[s
is chosen to be At which results ingi, =54.9° by the equality in (22). As can be seen
in Fig. 5a, the PWTD results are in excellent agreement with the exact fields. The fie
due to the first pulsgy(t), are observed far < 98 ns, and those due to the second pulse
0.5g(t —3x 10°8), appear later. Figure 5b shows the observed fields obtained by translat
the subrays at=30At + ITs — 2p At <t As expected, early translation of subrays
has produced ghost signals. The ghosts dugttpare seen fot < 67 ns and those due to
0.5g(t — 3 x 10°8) corrupt the observed fields in the interval 75#$ < 98 ns.

Next, several tests were conducted to check the accuracy of the PWTD algorithm.
this purpose, six sources with time signatufégt) =g(t), j =1, ..., 6, were distributed
in the y-z plane on the surface of the source sphere. The radiated fields were evalu
throughout a 12 mx 12 m region in they-z plane centered about the observation spher
center. The normalized error in each observer response was calculated by dividing
L, norm of the difference between the exact fields and those computed using the PW
algorithm by theL, norm of the exact fields. The parameters defining the temporal al
spherical interpolation functions, and an estimate of the truncation error introduced by
use of these interpolants are tabulated in Table 1 along with the average error throughot
observation sphere. It is seen that the error in the observed fields is of the same order ¢
error introduced by the interpolations. This implies that, as expected, the difference betw
the analytical and the PWTD solutions depends solely on the error due to interpolation
can be reduced to arbitrary precision. The errors for Cases B, D, F, and H of Table 1
plotted throughout the square observation domain in Fig. 6. The location of the observa
sphere is also depicted in these figures, and it is seen that for all four cases the de
accuracy is obtained throughout the observation sphere.

3.2. Two-Level Plane Wave Time Domain Algorithm

Now that the applicability of the PWTD algorithm has been verified for a pair of sour
and observation groups, we will demonstrate that this algorithm results in a reductior
computational complexity when applied to the analysis of scattering from large surfaces.’
PWTD algorithm is intended to be used in conjunction with time domain integral-equati
schemes like MOT. In this subsection, the computational complexity of the two-level PW"
algorithms will be derived. This analysis is akin to that used in illustrating the computatior
complexity of the frequency-domain FMM technique [36, 37].

In order to reduce the computational complexity of the classical MOT algorithm, the sce
erer is subdivided intdNy subscatterers or groups, each of which contains approximate
Ms o Ns/Ng sources. If two subscatterers are separated by less than a preset distance,
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FIG.5. Observer responses at ol and 02 due to sources at s1 and s2 for (a)tE8fract (b) smalt",

are said to reside in

each other’s near-field, and their interactions are computed usin

classical MOT scheme since it becomes impossible to chookg &, of O(1) that satisfies

constraints (21) and

(22). All other subscatterer pairs are said to reside in each other”

field. The cost associated with the computation of the near-fi€lgs,is proportional to the
square of the number of unknowns per group, the number of groups, and the total nul
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TABLE 1
Estimates of Relative Errorse; and e Introduced by Temporal and Spatial Prolate Interpo-

lations, Respectively, and the Average Normalized Error in Observed Fields in the Observation
Sphere

Case Xo Pt X1 X2 Ps & &s Average error
A 2.17 4 1.25 2.5 4 A6x 1073 8.03x 102 1.83x 1073
B 2.17 6 1.25 3.2 5 B5x 10 1.79x 104 1.99x 10
C 2.17 8 1.25 2.9 7 B6x 10° 2.02x 10° 4.20x 10°°
D 2.17 11 1.25 3.2 8 A8 x 10°® 1.43x 10°® 241 x 10°®
E 2.17 13 1.25 3.9 8 37 x 107 3.60x 1077 2.50x 1077
F 2.17 15 1.25 4.8 9 30x 10°8 1.11x 10°® 1.18x 10°8
G 2.17 17 1.25 5.1 9 .04 x 10°° 1.60x 10°° 5.15x 10°°
H 2.17 19 1.25 5.4 10 22 x 10710 9.31x 101 3.01x 107

3 4 -] 0 z 4 8 _fs -4 -2 0 H 4
FIG. 6. Logarithm (base 10) of normalized errors observed in a 3218 m region enclosing the observation
sphere (black circle) for several cases tabulated in Table 1. (a) Case B. (b) Case D. (c) Case F. (d) Case H.
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of time steps in the analysis:

Cnr o (#0f groups x (# of unknowns per group x (# of time stepp
o NgM2N;

NS 2
MZN
“(Ms) s

o NsMgN;. (55)

Interactions between remote groups are accounted for by using the three-stage proc
consisting of aggregation, translation, and disaggregation. During the aggregation stz
separate set of outgoing subrays is constructed for each source group and for eact
interval. During the translation stage, outgoing subrays are convolved with the transle
functions on a direction-by-direction basis for each far-field group pair, and the resul
plane waves are added onto the incoming rays impinging on an observation group. D
the disaggregation stage, the fields at the observers are reconstructed by projection
incoming rays onto the observer points. Note that, as the disaggregation process |
reverse of the aggregation process, its cost is comparable to that of the aggregation
Let C}? denote the total cost associated with first and third stages. Then,

C& o (#of groups x (# of unknowns per groyp
x (# of ray direction3 x (# of time steps
o NgMsDsN;

Ns
X VS MSMSNt

o NsMsN;, (56)
where it is assumed th@il; x Mg as discussed above. The cost of the translation proc
Ci is

C2- o (#of groups? x (#of ray directions
x (# of time interval$ x (cost per subray translations
o« NGDsL M log M,
N 2
x <MS) MsN; log Mg

S
N2
x —= N log M, (57)
Ms

where it was assumed that the translation convolution was performed using an FFT,
M/ o< /M5 as discussed earlier, and tHatx N;/M/. The total cost associated with the
computation of the fields at all the observers is equal to
Cr = Cnr+ Crr
= Cne+ CH + CE-. (58)
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It can be verified that for the algorithm described above, the optimal number of unknov
per group isMs o« N2/2, and the total computation time scales as

Cr o« NeN¥?log Ns. (59)

The cost of this algorithm can be further reduced if one makes use of the fact that nof
plane waves need to be translated from one group to another. Indeed, as the intera
groups move further apart, the number of plane wave components which participate shr
to a constant. This yields

2 N2

Cr NIM_Sz log Ms. (60)
S

Using this expression in Eq. (58), the optimal valugvifis found to beN2/3, and the total
cost of the field computation scales as

Cr o« NeNZ3log Ns. (61)

Note that the computational costs of both the nonwindowed and the windowed two-le
PWTD scale more favorably than those of the classical MOT and FDTD algorithms.

3.3. Multilevel Plane Wave Time Domain Algorithm

Itis well known that the computational complexity of two-level frequency-domain FMN
algorithms can be further reduced through a divide-and-conquer strategy by casting
algorithm in a multilevel framework. This is also true for fast plane wave time doma
algorithms.

To compute the fields using a multilevel strategy, the surface is embedded in a
which is subdivided into eight child boxes or groups. Each of the nonempty child boxe:s
again subdivided into eight boxes, and this process is continued recursively until the fir
level is reached. At the finest level, each box contains a fixed number of sources which
independent of the problem size. The number of ledgls proportional to logNs. For levels
i =1 ..., N, letNg(i) denote the number of nonempty groupki ) the average number
of sources in each grouls(i) the number of ray directions associated with a group, an
Rs(i) the group dimension. Also, the duration of the subray at levil/ (i), is assumed
to be proportional to,/Ms(i). Finally, letL(i) o« N;/M/(i) denote the number of time
intervals associated with levelAssuming that levels are numbered starting from the fine:
level upward, for a surface scatterllg(i + 1) oc Ng(i)/4 andMs(i + 1) oc 4Ms(i ). We also
assume thalily(1) o« Ns, and thatMs(1) andRs(1) are ofO(1). Asi increases, (i) shrinks;
hence fewer time intervals are associated with higher levels. Subrays at each level ca
constructed by concatenating (partially overlapping) subrays that have been construct
lower levels. As before, it can be shown tihg(i) oc Ds(i) o< (Rs(i)/(CAt))2. At any level,
two boxes are said to reside in each other’s near-field if they are separated by no more tt
preset, fixed number of boxes. All other box pairs are said to reside in each other’s far-fi

1 Note that, for source and observation spheres that are not separated by a distance that is very large con
to the sphere radius, the number of rays that need to be translated becomes larger than the constant assume
derivation of (60). However, it can be shown through a more rigorous derivation that this effect does not alter
above derived complexity estimate BEF.
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The total cost of the field computation is again a sum of a near-field @gstand
a far-field costCgr. At the finest level, fields are computed directly for all sources ar
for all observers that reside in each other’s near-field for all time steps. The cost of
operation is

Cnr  (#of finest level groupsx (# of sources per finest level groyp
x (# of time stepps
o Ng()MZ(1)N;
oc NsN. (62)

The cost of computing the far-field interactions is again composed of aggregation, tr
lation, and dissagregation costs. However, in contrast to the two-level algorithm outli
above, these costs are now distributed oveNalevels.

First, consider the cost of computing the outgoing rays. At any given level, the outgc
rays associated with a group are constructed by (i) interpolating the spectra of its chil
to the ray density prescribed by the dimension of their parent group, (ii) concatena
consecutive child subrays two-by-two, and (iii) shifting all ray origins from child bc
centers to parent box centers. Similar operations are required when constructing inco
rays. The total cost of constructing the outgoing and incoming rays is

cL3 o ENI: (# of groups at level)i x (# of directions at level)i
FF x (subray length at leve)ix (# of time intervals at level)i

\1
oc )~ Ng(i)Ds(i)M{ ()L (i)

i=1

N, N
x ; (Ms(i)) Mo

(0.6 Nt NS |Og Ns. (63)

To compute fields at observers, outgoing rays are translated between all group pair:
reside in each other’s far-field and whose parents reside in each other’s near-field. The
of translating subrays is proportional to

N [ (#of groups at level)i x (# of ray directions at level)i
CZ o > ¢ x(#oftime intervals at levei
i=1 x (cost per subray translation at level i

N

o > Ng(i)Ds(i)L (i) M;(i) log M{(i)

i=1
N
oc NeNs > log M (i)
i=1
o N{NsMs(1)(log 2 + log 2* + log 2? + - - - + log 2°9™s)
o NtNs(L+ 2+ - - - + log Ns)
o N Ns log? Ns. (64)
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Comparing the expressions f@r, CX, and CZ, it is seen that the total cost of the
multilevel PWTD algorithm is dominated $2.; hence,

Cr o N¢Nslog? Ns. (65)

This cost can be further reduced if use is made of the truncated versiby(@f to form
the translation functions (see Subsection 2.3). For sufficiently large scatterers, the lel
of these truncated translation functions scalegRgc) psA06i:. Since, in a multilevel
setting,R; scales asxs, Af scales as /R, and ps andfi,; remain constant for all levels,
the translation function length is @(1). Therefore, directly convolving each subray with
the translation function will be more efficient than using an FFT, reducing the cost per sub
translation inC2¢ from O(M{(i)log M/(i)) to O(M/(i)). This results in a total complexity
of

CT (04 N'[ NS |Og Ns. (66)

4. SUMMARY

This paper presented PWTD procedures that permit the fast computation of trans
fields radiated by surface bound sources. These schemes rely on time domain diagone
translation operators and can be considered an extension of the frequency domain
multipole method to the time domain. The practical implementation of the PWTD algorith
has been elucidated, and examples illustrating its accuracy have been presented. It has
shown that the error in the observer fields depends solely on the approximations introdt
by the interpolation functions, whose parameters can be chosen in accordance with
desired error criterion. The PWTD algorithms complement integral-equation-based sot
updating schemes and reduce the computational complexity associated with the ana
of surface scattering phenomena fr@iN; N2) to O(N;N2/3log Ns) for two-level and to
O(N; Nslog Ns) for multilevel schemes.

Two-level and multilevel PWTD algorithms have been applied to the analysis of larg
scale acoustic and electromagnetic scattering problems, and our results will be repc
elsewhere. Work toward extending this algorithm to multilayered media and the hybridi:
tion of the PWTD algorithm with shooting and bouncing ray methods is in progress.
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